A Search Space Reduction Algorithm for Mining Maximal Frequent Itemset
نویسندگان
چکیده
منابع مشابه
Index-Maxminer: a New Maximal Frequent Itemset Mining Algorithm
Because of the inherent computational complexity, mining the complete frequent itemset in dense datasets remains to be a challenging task. Mining Maximal Frequent Itemset (MFI) is an alternative to address the problem. Set-Enumeration Tree (SET) is a common data structure used in several MFI mining algorithms. For this kind of algorithm, the process of mining MFI’s can also be viewed as the pro...
متن کاملBit Stream Mask-Search Algorithm in Frequent Itemset Mining
Association Rules in data mining are generated by identifying relationships among set of items in transaction database. Finding frequent itemsets is computationally the most expensive step in Association rule discovery and therefore it has attracted significant research attention. Although several techniques have emerged, they are all inherently dependent on the memory availability. This paper ...
متن کاملMAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases
We present a new algorithm for mining maximal frequent itemsets from a transactional database. Our algorithm is especially efficient when the itemsets in the database are very long. The search strategy of our algorithm integrates a depth-first traversal of the itemset lattice with effective pruning mechanisms. Our implementation of the search strategy combines a vertical bitmap representation o...
متن کاملA Search Space Reduced Algorithm for Mining Frequent Patterns
Mining frequent patterns is to discover the groups of items appearing always together excess of a user specified threshold. Many approaches have been proposed for mining frequent patterns by applying the FP-tree structure to improve the efficiency of the FP-Growth algorithm which needs to recursively construct sub-trees. Although these approaches do not need to recursively construct many sub-tr...
متن کاملYAFIMA: Yet Another Frequent Itemset Mining Algorithm
Efficient discovery of frequent patterns from large databases is an active research area in data mining with broad applications in industry and deep implications in many areas of data mining. Although many efficient frequent-pattern mining techniques have been developed in the last decade, most of them assume relatively small databases, leaving extremely large but realistic datasets out of reac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2013
ISSN: 0975-8887
DOI: 10.5120/14146-2288